OCR Post-Processing Error Correction Algorithm using Google Online Spelling Suggestion

نویسندگان

  • Youssef Bassil
  • Mohammad Alwani
چکیده

With the advent of digital optical scanners, a lot of paper-based books, textbooks, magazines, articles, and documents are being transformed into an electronic version that can be manipulated by a computer. For this purpose, OCR, short for Optical Character Recognition was developed to translate scanned graphical text into editable computer text. Unfortunately, OCR is still imperfect as it occasionally mis-recognizes letters and falsely identifies scanned text, leading to misspellings and linguistics errors in the OCR output text. This paper proposes a post-processing context-based error correction algorithm for detecting and correcting OCR non-word and real-word errors. The proposed algorithm is based on Google‟s online spelling suggestion which harnesses an internal database containing a huge collection of terms and word sequences gathered from all over the web, convenient to suggest possible replacements for words that have been misspelled during the OCR process. Experiments carried out revealed a significant improvement in OCR error correction rate. Future research can improve upon the proposed algorithm so much so that it can be parallelized and executed over multiprocessing platforms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

OCR Post-Processing Error Correction Algorithm Using Google's Online Spelling Suggestion

With the advent of digital optical scanners, a lot of paper-based books, textbooks, magazines, articles, and documents are being transformed into an electronic version that can be manipulated by a computer. For this purpose, OCR, short for Optical Character Recognition was developed to translate scanned graphical text into editable computer text. Unfortunately, OCR is still imperfect as it occa...

متن کامل

Post-Editing Error Correction Algorithm for Speech Recognition using Bing Spelling Suggestion

ASR short for Automatic Speech Recognition is the process of converting a spoken speech into text that can be manipulated by a computer. Although ASR has several applications, it is still erroneous and imprecise especially if used in a harsh surrounding wherein the input speech is of low quality. This paper proposes a post-editing ASR error correction method and algorithm based on Bing’s online...

متن کامل

OCR Context-Sensitive Error Correction Based on Google Web 1T 5-Gram Data Set

Since the dawn of the computing era, information has been represented digitally so that it can be processed by electronic computers. Paper books and documents were abundant and widely being published at that time; and hence, there was a need to convert them into digital format. OCR, short for Optical Character Recognition was conceived to translate paper-based books into digital e-books. Regret...

متن کامل

Context-sensitive Spelling Correction Using Google Web 1T 5-Gram Information

In computing, spell checking is the process of detecting and sometimes providing spelling suggestions for incorrectly spelled words in a text. Basically, a spell checker is a computer program that uses a dictionary of words to perform spell checking. The bigger the dictionary is, the higher is the error detection rate. The fact that spell checkers are based on regular dictionaries, they suffer ...

متن کامل

Statistical Learning for OCR Text Correction

The accuracy of Optical Character Recognition (OCR) is crucial to the success of subsequent applications used in text analyzing pipeline. Recent models of OCR post-processing significantly improve the quality of OCR-generated text, but are still prone to suggest correction candidates from limited observations while insufficiently accounting for the characteristics of OCR errors. In this paper, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1204.0191  شماره 

صفحات  -

تاریخ انتشار 2012